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Nonlinear dynamics of classical Heisenberg chains
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The maximum Lyapunov expone(WILE) is evaluated as a function of temperature in the isotropic Heisen-
berg chain. At low temperatures the MLE varies almost quadratically with temperature; it corresponds closely
with 71’,21 , the rate at which the local self-correlation decays to half its initial value. At higher temperatures, the
MLE saturates at a value close to 1/2 in the limit of large chain lengths. The strong stochasticity threshold
(defined by the change of slope of the MLEarallels closely the transition from predominantly ballistic to
predominantly diffusive behavior of the self-correlation and the concomitant steep increa@é.inThe
complete Lyapunov spectrum has been derived for a chain of 18 spins; deviations from linearity occurring at
infinite temperature suggest that the chaoticity of the system is incomplete. Finally, it is suggested that a
systematic study of finite-size effects might be useful in deciding the issue of anomalous versus conventional
spin diffusion.[S1063-651X97)05205-1

PACS numbses): 05.45+b, 75.10.Hk, 75.40.Gb, 75.40.Mg

[. INTRODUCTION along resonances to onacrossresonancegstrong stochas-
ticity threshold(SST)] [20-22.

The classical Heisenberg chain captures many salient fea- In addition to the MLE, the dependence of the full spec-
tures of real magnets. Previous studigs11] of its dynam-  trum of Lyapunov exponents on the energy density has been
ics have focused on the spatially Fourier-transformed autostudied[23,24. It has been found that, as the integrable limit
correlations, mainly motivated by the need to explain thejs approached, only a few of the Lyapunov exponents reflect
results of inelastic neutron scattering experiments. At lowthe chaotic behavior; the rest are relatively small. In contrast,
and intermediate temperatures, the quantity of interest as chaos becomes complete, the Lyapunov spectrum be-

comes almost linear.
Cq(1)=(S4(1)-S_4(0)), (1.2 This work presents results for the MLE, the Lyapunov
spectrum, and their temperature dependence; in order to fa-
2 ey N —igld ; ; cilitate the synthesis between the nonlinear dynamics and the
where Sq(t)=(1/\/E)E|=1e TS, or, alternatively, its condensed—%atter perspectives, we have alzo calculated the

Fourier transformCq(w) was found to be dominated by local self-correlations of the spin density. Although the latter

spin-wave peaks, whose width increased with increasin . . . .
temperature. More recent work has emphasized the infinitéusggfgogjt;?; dogﬁjr dtiz(: E??rgirs;)isr?I;rtllggorr]r?:r?ae(;::j tﬁ;

temperature aspect: By making use of large-scale numeric P . L ) o
simulations, various grougd2—19 have tried to determine rodynamic modes, it is less fluctuation sensitive and better

whether the(diffusive) hydrodynamics holds exactly in the SUited to provide reliable data for studying the basic time
isotropic case. scales involved, i.e.(i) t_he §_h0rt t!mes cha_\ractgrlzmg the
Alternatively, it is possible to view the Heisenberg chain regular decay of correlationsi) the intermediate times over
as a nonlinear dynamical system and try to exploit conceptéhich memory is lostand chaos establishgdest defined in
and methods developed in the context of dynamical systeméerms of the decay of self-correlation to half its original
The temperature in this case plays a key role: It is the pavalue; and(iii) the long times where diffusive behavior
rameter that tunes the system’s behavior from complete dominates. Our results demonstrate that, at low temperatures,
nearly completgintegrability to fully developed chaos. The the inverse of the MLE, the Lyapunov time, is essentially
most reliable diagnostic tool in order to characterize the deidentical to the time scal¢ii) (cf. above. Moreover, our
gree of intrinsic instability of a nonlinear system with many Lyapunov data reveal the existence of a SST that roughly
degrees of freedom is the spectrum of Lyapunov exponentparallels the transition from spin-wave- to diffusion-
Calculations of the maximum Lyapunov expondMLE) dominated regime.
A in key lattice nonlinear mode[g-ermi-Pasta-UlaniFPU) The paper is structured as follows. Section Il introduces
B and ¢*] for varying values of the energy densiéyreveal  some necessary background on the statistical mechanics of
the existence of a critical value*, where the behavior of finite chains and discusses the dependence of the MLE and
A\, changes. The critical value is independent of the numbethe Lyapunov spectrum on the temperature, the size of the
of degrees of freedor in the system and is not related to chain, and the type of the interaction. Section Ill presents
the transition towards ergodic behavighe ergodic thresh- results on the autocorrelation functidimcluding a discus-
old is at lower values oé and tends to zero &¢—x); it has  sion of finite-size effects useful in analyzing long-time data
been attributed to the transition from phase-space diffusiomlong with comments on the correspondence between parts
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of dynamical information contained in MLE and autocorre-
lations. Section IV summarizes our basic conclusions.

II. LYAPUNOV EXPONENTS

The dynamics of the classical, isotropic, ferromagnetic,
Heisenberg chain is determined by the spin equations of mc
tion

d

=Ti({SH=-SXVgH=5x(S_1+S 1),

—

(2.9

whereH = —zr‘s.éﬂ and the chain is subjected to peri-
odic boundary condition§y.;=S;. It may be remarked in

passing that there is an alternative, equivalent formulation of
classical spin dynamics, in terms of the canonical variable§UIr

pi=S and ¢;=arctan§/S); we have not used this version
of the dynamics, in spite of its obvious appésinaller num-
ber of equations, symplectic structyrdecause it leads to
numerical instabilitieqlarge rates of changesvery time a
spin becomes parallel to theaxis. On the other hand, the
spin dynamics described by th&3quationg2.1) is intrin-
sically slower than particle dynami¢presumably due to the
N conservation laws that express the constancy—N.B. not
constraint—of the spin vectors’ magnitydéhis imposes an
additional limitation on the size of spin rings that can be
studied within finite computation times.

For N=3, there are three independent integrals of motion

that are in involution K,S%,=3Ns?,S2); in addition, for
N=4 the quantityS,-S; (or S,-S,) is also an independent
integral of motion. Thus the ring withN<<4 is completely
integrable. FON>4 there areN— 3 positive Lyapunov ex-
ponents.

We want our Lyapunov calculations to reflect the sys
tem’s behavior at a given temperature. Practically, this i
done as follows: We computéheoretically the canon-
ical averages at temperaturelT [25,26, (H)nrT,
(StonT ((Shon1=0), and choose initial conditions for the
spins that satisfyH=(H)y 1, S5=(Soon1, and S5,=0.
The Lyapunov exponents calculated in this manner can b
considered typical of the dynamical instability at the “tem-
perature” T. It should be noted at this point that, from our
point of view, there is nothing special about infinite tempera

ture, i.e., the values given below for infinite temperature

were obtained from runs with initial conditionrd=0 and
Stzot: N.

The determination of Lyapunov spectra of HG.1) is
based on the method of Benettat al. [27,28, as imple-
mented by Wolfet al. [29] and Mutschke and Balg4] for
particles on a lattice. The scheme involves solving dL),
along with the linearized equations of motion

N

> 2

j=1 B=x,y,z

dss®
—=

T,
S

1,... M,

(2.2

)
S

where M is equal to the number of Lyapunov exponents
computed and(¥= 5S¥. § vanishes for all andu and at

NONLINEAR DYNAMICS OF CLASSICAL HEISENBERG CHAINS

7613
1 OQG.g‘enoseee&
NG
o~ g ++
?ﬁ gg * ® N=o
[I_‘ ﬁg + al 48
= ° 36
< ¢ + a
= 24
Ea o1l é v sl ]
F ’ ¢ o 12 ]
3 L
0.1 1 T 10

FIG. 1. Maximum Lyapunov exponent as a function of tempera-
e for isotropic Heisenberg chains of different sizes.

all times.[N.B. At t=0 this is true by the definition of the
tangent space, i.e., it is reflected in the choice of khe
linearly independent initial conditions. At later times, the
value of I{*) remains constant; this constancy is not a con-
straint, but a “conservation law” of the joint dynamical evo-
lition in phase and tangent space, as defined by €4¥.
and(2.2). Hence, in the numerical simulatidf¥”) vanishes
within numerical error, as is the case with all conservation
laws]

Integration of Egs.(2.1) and (2.2) is performed by a
fourth-order Runge-Kutta method with adaptive step size
control. The time interval between successive Gram-Schmid
orthogonalizations waa\t=0.1 and determination of the
MLE took approximately 1.5 1(° steps; computation of the
full Lyapunov spectrum was restricted to &%0° steps. The
statistics of values of the Lyapunov exponents obtained dur-

dng the last quarter of the integration interval showed that, in

all cases, the(relative standard deviation was less than
1023 for the MLE and less than %102 for the other ex-
ponents. The values of the three constants of motion were
monitored during the course of integration; the relative error
did not exceed %10 .

e Initially, we computed the MLEA; for rings of size
N=12,24,36,48 and temperatures between 0.15 candf.
above. We observe that, although the overall form of
N1(T) seems to be the same for &, the values depend
somewhat on ring size. Furthermore, we exploit the fact that
the MLE approaches a constant value as the temperature
tends to infinity, in order to produce a “reduced” plot of the
temperature dependence of the MUEg. 1). The values of

the infinite-temperature MLE’'s as a function ofNLl/are
shown separately in Fig. 2.

The main feature of\4(T), for all values ofN, is the
smooth change of slope that characterizes the transition from
the low- to the high-temperature regime. This seems to be a
generic feature of Hamiltonian systems with a large number
of degrees of freedom. It has been observed in @{e)
Heisenberg moddB0], the FPUB model, and thes* model
[20-22 and has been correlated with the appearance of a
SST[20-27, i.e., a critical value of the energy densiy (or
the temperaturd ), above which rapid diffusion in phase
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FIG. 2. Size dependence of the maximum Lyapunov exponent at

infinite temperature. . .
nin! peralu FIG. 3. Spectrum of Lyapunov exponents at high and interme-

space can occur as a result of strong overlap of resonancesifte temperatures.

the stochastic web. Diffusion in this case takes place across

resonances, in contrast to what happensedare., where by the LS of Heisenberg chains with randoii.e.,
(Arnold-like [31]) diffusion can take place only along reso- = _sN3.§.§, , J;=+1; cf. [13]) and alternating inter-
nances. Orbits in the case of Arnold diffusion are more “tor-ctions[J,= (—1)'; cf. [13]], which show stronger devia-

tuous” and less chaotic. The SST thus signals the destructiofions from linearity(especially the alternating caséFig. 4)

of the stochastic web. and concomitant stronger signatures of short-time spin-
A rough estimate of the crossover temperature can be oRyaye-like dynamicgcf. the next section

tained by the intersection of the straight line that describes Resyits belowT=0.4 seem to reverse even the general

the low-temperature T<0.4) asymptotic behavior of treng: Althoughi,(T) continues to decrease, the spectrum’s
N1(T), with the infinite-temperature asymptote. Hér=48 curvature, as measured by, e.g. ,

we estimateT.,=0.55. At low temperatures, we find that
A(T)~T1% we will return to the above estimates of the

crossover temperature and the power-law behavior of the (AN]Y 1 Ny N, —i+1
MLE in Sec. Ill in order to correlate these findings with NN 21 )\i—N—)\l , (2.3
1 A= A

autocorrelation data.
A more complete description of chaotic behavior is pro-

vided by the full spectrum of Lyapunov exponents. Compu-Stops increasing and in fact shows signs of a decréfige

tations in a variety of Hamiltonian systems have shown thaF) Thus the curvature af=0.2 andT=0.5 hardly differ:

as the integrable limit is approached, the number Ohhaximum curvature appears at=0.4. [It is interesting to

Lyapunov exponents effectively responsible for chaotic be'note in this context thaT =04 is also the maximum tem-

havior decreases; in other words, the curvature of the func- . - :
. . ' i ' rature for whi T) exhibi wer-law behavigrin
tion \i(i/N,) (where N, is the total number of nonzero perature fo Chry(T) exhibits power-law behavid
Lyapunov exponenjsincreases. Conversely, as complete

chaos evolves, the Lyapunov spectr(in$) becomes nearly —r

linear. (Compare the numerical evidence given by Letial. 1or N=18. T=w LS
[23] that the LS generated by the application of random ma- Varyh;g interactions:
trices is linean. The curvature of the LS could thus provide 0.8F —m— regular
an alternative measure of chaoticity. i —o— random

In order to pursue this question further, we studied the LS 0.6 - alternating
for a chain withN=18 over the whole temperature range <
used in the MLE computations. Results above 0.4 are <&
consistent with the simple picture presented above, i.e., a 04F T
monotonic decrease of the spectrum’s curvature with in-
creasing temperaturef. Fig. 3. It should be noted, how- 0.2 .
ever, that even in the infinite-temperature limit, there is a i \
significant deviation from linearity. It would be interesting to 0.0 S T S S
explore whether this is a finite-size effect, but our computa- 0.0 0.2 04 0.6 0.8 1.0
tional capacities do not allow us to compute LS of larger N,

chains. On the basis of our findings, we tend to attribute the

deviations from linearity to residual nonrandom dynamics; in  FIG. 4. Lyapunov spectrum for three types of isotropic Heisen-
a spin system this suggests the presence of spin waves thadrg chains, withi) regular ferromagnetigji) random,(iii) alter-
persist up to infinite temperature. This argument is supportedating nearest-neighbor interactions.
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FIG. 5. Deviation of the Lyapunov spectrum from lineafigg.

23] vs t " FIG. 6. Autocorrelation function of the classical Heisenberg ring
.3)] vs temperature.

(N=48) at different temperatures.

conclusion, it appears that the curvature of the LS can pro- ., _ .
vide a complementary measure of the chaoticity at moderatg ((¢*))"* can be obtained to a good approximation from a

and high temperatures. second-order moment expansion. This short-time decay rep-
resents the random superposition of regular motion in phase
lIl. AUTOCORRELATION FUNCTIONS space(parabolic decay of the cosine functionés duration

is at all temperatures shorter than the inverse Lyapunov time
As mentioned in the Introduction, the spectrum of dy- (cf. Fig. 9. Also plotted in Fig. 9 isr;;;, the (inverse time
namical correlations has been extensively studied in connegt takes for the autocorrelation to decay to 1/2, and the
tion with underlying spin-wave dynamidgt low tempera- | yapunov exponent. At low temperatures, the dependence of
ture9, or with spin diffusion(at infinite temperatupe In this 7.4 on temperature roughly parallels that of the MLE; in
work, we focus on those characteristics of the dynamica*act, the two numbers are rougly equal in magnitude. This
autocorrelations that are most likely to relate to the observedyeans that the decay of th@(t) to half its original value
Lyapunov behavior. More specifically, we deal with the fol- )y reflects the system’s chaotic nature. At this point, it is
Iowmlg issues related to the local spin-spin autocorrelatloqmeresting to note that the asymptotic power law followed by
function: the MLE (cf. Sec. I) makes it proportional to the square of
1 N the inverse correlation length; this is exactly the crossover
C(t)= N z (S(1)-S(0)): (3.1  time characterizing the transition from spin-wave-like to dif-
i=1 fusive behavior, at wave vectors comparable to the inverse
correlation length.
At very high temperatures, the half-time becomes very
short; its inverse exceeds the MLE. In facky,
=7, */(2In2)*2 holds, indicating that the decay is now domi-
nated by the regular parabolic decay. It is interesting to note

(i) the short- and intermediate-time behaviorGift) and its
relationship with the MLE;(ii) the determination of the
crossover temperature, above whicft) becomes diffusion
dominated, and the relationship to the SST; &id infinite-
time, finite-size characteristics @f(t).

Our calculation of Eq(3.1) at a given temperature pro-
ceeds as follows. An initial condition is chosen, with
E,S%,,S2, equal to their respective average values at that
temperature. The system is left to evolve according to Eq.
(2.1) and a time average over the orbit is taken.

Figure 6 summarizes the time dependence @) for a
variety of temperatures and=48. Finite-size effects can
best be isolated at infinite temperatuféig. 7). Finally, in
order to investigate the dependenceGit) on the type of 0.1}
the interaction, we have repeated the infinite temperature cal- i
culation for the two chains mentioned in Sec. Il, namely, the
alternating and the random exchange chain; results are
shown in Fig. 8 folN=18. On the basis of our findings, we
now discuss the three issues described above.

~_
—
Nt
[=]

C

A. Short- and intermediate-time dynamics
and Lyapunov exponents

The behavior ofC(t) at short times is well accounted for FIG. 7. Size dependence of the autocorrelation function of the
in terms of a Gaussian ekxp3(t/m)?], where 7,1  classical Heisenberg ring at infinite temperatures.
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FIG. 10. Long-time behavior ofCy(t) at temperatures

FIG. 8. Autocorrelation function at infinite temperature for threeT:O.4,0.5,0.6,0.8(from top to bottory, note the onset of the
types of classical Heisenberg rings, with regular, random, and alterﬁower-law behavior around=0.6.
nating nearest-neighbor interactiofcs. text), respectively.
It can be seen from Fig. 6 that the transition from ballistic

that the numerical value of the MLE allows this type of (o it sive behavior occurs somewhere betw@en0.4 and
behavior. If the MLE had a larger value, there would be NOT=0.8. In order to make this clearer, we present in Fig. 10

parabolic decay and no plateau preceding the onset of diffyy,q jme segment £0t<90 and attempt to fit to a straight
sion. The steep change i, betweenT=0.6 and 0.8 ré- jine peviations are evident foF=0.4 andT=0.5; they are
flects the fact that, at this temperature, the height of the bro ardly visible atT=0.6. It is reasonable to claim that the
plateau inC(t) (cf. Fig. 6 is in the vicinity of 1/2. latter temperature signals the crossover to the diffusion-
S . dominated regime. It should be noted that the strong stochas-
B. Spin diffusion vs strong stochasticity thresholds ticity threshold(cf. Sec. I) also occurs at that temperature. It

At infinite temperature, the long-time behavior of the therefore appears that the transition frophase-spagedif-
spin-spin autocorrelations is expected to be dominated bfiSion along resonances {phase-spagediffusion across
spin diffusion. In one dimension this implie8(t)«t-Y2 ~ fesonances coincides with the transition from spin-wave- to

Sidestepping the issue of anomalous vs conventional diffudiffusion-dominated d.ynamics. In order to understand this
sion for the momentcf. below), we will consider, for our phenomenon better, it should be remembered that the de-
purposes, diffusive behavior t(’) be defined by é power—lav@trucnon of the sto_chastic web is not a sudd_en process and
decay ofC(t); we are principally interested in determining f[thes: nt())t Teé:essanlty ct’cgul; htohmogene;)huslr)]/ n phr:}sel spac?;
the temperature dependence of diffusive behavior and in fol: IS 1S best demonstrated by the smooth change ol Slope o

ot : ; A 1(T) in the isotropic Heisenberg case, as compared with the
lowing its correlation with the onset of fully developed FPU B or ¢* models. The scenario taking into account the

chaos. numerous investigations ofspace and time Fourier-
- I transformed spin-spin correlations seems to proceed as fol-
o lows. At relatively low temperatures, only those regions of
1F 6___Q.o-oo—?’g""”‘°‘°"""$"-:1 the stochastic web are destroyed that correspond to spin
e Y ] waves of low wave numbers. As the temperature increases,
i 5 o OO0 SO0 O the destruction of the web extends over wider regions, allow-
'»4,8 ing diffusive behavior across resonances in phase space. This
9 should not be construed to imply that all spin-wave modes
0.1k V’ O ME Nt 1 are overdam_ped; indeed, ther_e is evidence for the persistence
T W VHWHMof GO (this work, N=49) of some spin-wave mode&with wave vectors near the
0 '_';'_"_:ig:)m Brillouin-zone edgg up to very high temperaturg41,15.
v B shorttime parabolic decay, Ned8 The exponent of the power law that characterigd$)
A O short time parabolic decay, N=18 remains temperature independent from the onset of its ap-
, v pearance. Furthermore, its value, 0.6, appears to be indepen-
0.01 =4 01  dent of the ring’s length.
0.1 Tempelrature Traces of the anomaly in the diffusion exponent can be

seen in Fig. 9, wher€(t) is plotted for regular, random, and
alternating chains witiN=18. The regular chain has less

FIG. 9. Summary of the temperature dependence of the basistrycture at short and intermediate times and appears to de-
time scales that govern the dynamics of the autocorrelation functiogay faster at long times.

Co(t). The upper curve represents the width of the Gaussian fit
to the short-timgnonchaoti¢ parabolic decay of the autocorrelation
function. The inverted triangles represent the halflife of the autocor-
relation; note the steep increase aroind0.6. Also plotted are the
values of the maximum Lyapunov exponent.

C. Long-time characteristics: Finite-size effects

It can be seen from Figs. 6—8 that autocorrelations do not
decay indefinitely. After a finite time,,, C(t) saturates at a
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10 ——r —————— satisfy at all times the sum rule

—~ enhancement of finite size % cmt _2 é 0 > 0)) = ﬂ 3.4
I% effect at low temperatures “=1 (H= - < m( )SO( )>_ 1—u’ (3.4
? B (N=48) |
< theory whereu=coth(1T)—T. At very long timest>t.,, spin dif-
Y ] fusion ensures that any fluctuation in the initial values is
=) uniformly distributed in the chain, i.e., all terms in E§.3
; contribute equally to the sum, and
=
o . 11+u

1k . . ‘ | . L C (I)NCMZNE, m=1,...,N. (3.5

0.1 1 10

T The above reasoning is independent of the particular type of

chain and depends solely on the isotropic property; Fig. 8
FIG. 11. Limiting value of the spin-spin autocorrelation as confirms this explicitly by showing thaE(t) in the ferro-
t—oo, plotted as a function of temperature, fd=48. Also shown  magnetic, random, and alternating chains all converge to the
is the prediction of Eq(3.5). same limiting values. It is already apparent from Fig. 6 that
this type of finite-size effect increases as the temperature is
finite valueC... Both constants.. andC.. are size depen- |owered. The plot shown in Fig. 11 confirms that this in-
dent; accordingly, a study of the size dependence may provgrease ofC.. closely follows Eq.(3.5).

revealing for the system’s approach to equilibrium in the The size dependence of offers additional insight into

thermodynamic limit. o the long-time, diffusion-dominated dynamics of the system.
Conservation of the total magnetization It is instructive to analyze the data in two different ways:
N plottingt>t.. vs N on a double logarithmic scal&ig. 12a)]
=S &) =50 3.2 shows that the data for the chains considered in this work are
® 21 S(H=S(0) 32 consistent with
implies that the correlation functions t, o NL16 (3.6
N
1 R R . . . . .
cmt)= — t)-&(0 33 such a value might indeed reflept apomalous d|ffus_|on with
® N .21 (Si+m()-5(0)) 33 an exponent equal to 1/1.60.6, i.e., in agreement with the
0.05 v T v T M T v 1
.“.‘
‘| finite duration of diffusive motion
(regular diffusion: b=2)
5
100} ]
a I .\. 1
Z 004 - :
/ N
[ | n
fit: t_=a N°
a=0.14 (0.02)
b=1.67 (0.03)
[ ]
L
003 " 1 2 1 " 1 " 1 N M " "
000 001 002 0.03 004 0.05 0.01 0.02 0.03 0.040.05
I/N N

FIG. 12. Right: size dependencetof, the time it takes for the spin-spin autocorrelation to reach its saturation value. The scale is doubly
logarithmic and the slopp=1.67 corresponds to a spread of a spin fluctuation accordifigA®)°)«t, i.e., an anomalous diffusion with
an exponent b'=0.60 (cf. Ref.[12]). Left: regular diffusion[fit according to Eq(3.7)] would produce points lying on a straight line.
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value originally suggested by Mar [12,13. Alternatively, IV. CONCLUDING REMARKS
it is evident that our results cannot be fitted to the straight

line We have shown that the information contained in the

Heisenberg chain’s Lyapunov exponents may be useful in
interpreting the dynamics of the local autocorrelation func-
tion. The quantitative agreement between the largest
Lyapunov exponent and the inverse half-time of the local
self-correlation at low temperatures confirms that both quan-
tities express the time scale involved in the loss of memory
occurring in the near-integrable regime. At intermediate tem-
peratures, we have identified the occurrence of the SST with

t(N) b
—Z—=a+

[Fig. 12b)] [which would imply a loss of memory due to

(regulay diffusion, including (analytig corrections that be-
come negligible in the thermodynamic lirhiThe above pro-
cedure distinguishes between E@&6) and(3.7) and can be
used, in principle, as direct test for anomalous diffusion;

the passage of the autocorrelation dynamics from the spin-
wave- to the diffusion-dominated regime. Finally, at infinite

temperatures, the deviations of the Lyapunov spectrum from
the linear form has been ascribed to the same lack of com-

unfortunate|y’ the chain |ength5 necessary for a definitive teﬂ'Gte_ chaos that characterizes autocorrelations; moreover, the
are beyond our present computational capabilities. In view ofelatively small value of the largest Lyapunov exponent,
the current lack ofigeneral as well as internatonsensus compared with the period of short-wavelength excitations,
between theoretical approach@onventional hydrodynam- explains why the ‘I‘atter pe’r,5|st even at infinite temperatures,
ics vs “refined mode coupling”[32], which proposes giving rise to the “plateau” feature in the self-correlation.
anomalous diffusion with an exponent 2/&nd extensive
numerical simulation result@vhich suggest that regular dif-
fusion may[15] or may not[19] prevail at longer times and
larger chaing such a(definitive) test appears highly desir-
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