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Nonlinear dynamics of classical Heisenberg chains
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Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vasileos Constantinou 48,

GR-116 35 Athens, Greece
~Received 10 September 1996!

The maximum Lyapunov exponent~MLE! is evaluated as a function of temperature in the isotropic Heisen-
berg chain. At low temperatures the MLE varies almost quadratically with temperature; it corresponds closely
with t1/2

21 , the rate at which the local self-correlation decays to half its initial value. At higher temperatures, the
MLE saturates at a value close to 1/2 in the limit of large chain lengths. The strong stochasticity threshold
~defined by the change of slope of the MLE! parallels closely the transition from predominantly ballistic to
predominantly diffusive behavior of the self-correlation and the concomitant steep increase int1/2

21 . The
complete Lyapunov spectrum has been derived for a chain of 18 spins; deviations from linearity occurring at
infinite temperature suggest that the chaoticity of the system is incomplete. Finally, it is suggested that a
systematic study of finite-size effects might be useful in deciding the issue of anomalous versus conventional
spin diffusion.@S1063-651X~97!05205-7#

PACS number~s!: 05.45.1b, 75.10.Hk, 75.40.Gb, 75.40.Mg
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I. INTRODUCTION

The classical Heisenberg chain captures many salient
tures of real magnets. Previous studies@1–11# of its dynam-
ics have focused on the spatially Fourier-transformed a
correlations, mainly motivated by the need to explain
results of inelastic neutron scattering experiments. At l
and intermediate temperatures, the quantity of interest

Cq~ t ![^SW q~ t !•SW 2q~0!&, ~1.1!

where SW q(t)[(1/AN)( l51
N e2 iqlSW l(t), or, alternatively, its

Fourier transformC̃q(v) was found to be dominated b
spin-wave peaks, whose width increased with increas
temperature. More recent work has emphasized the infin
temperature aspect: By making use of large-scale nume
simulations, various groups@12–19# have tried to determine
whether the~diffusive! hydrodynamics holds exactly in th
isotropic case.

Alternatively, it is possible to view the Heisenberg cha
as a nonlinear dynamical system and try to exploit conce
and methods developed in the context of dynamical syste
The temperature in this case plays a key role: It is the
rameter that tunes the system’s behavior from complete~or
nearly complete! integrability to fully developed chaos. Th
most reliable diagnostic tool in order to characterize the
gree of intrinsic instability of a nonlinear system with ma
degrees of freedom is the spectrum of Lyapunov expone
Calculations of the maximum Lyapunov exponent~MLE!
l1 in key lattice nonlinear models@Fermi-Pasta-Ulam~FPU!
b andf4# for varying values of the energy densitye reveal
the existence of a critical valuee* , where the behavior o
l1 changes. The critical value is independent of the num
of degrees of freedomN in the system and is not related
the transition towards ergodic behavior~the ergodic thresh-
old is at lower values ofe and tends to zero asN→`); it has
been attributed to the transition from phase-space diffus
551063-651X/97/55~6!/7612~7!/$10.00
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along resonances to oneacrossresonances@strong stochas-
ticity threshold~SST!# @20–22#.

In addition to the MLE, the dependence of the full spe
trum of Lyapunov exponents on the energy density has b
studied@23,24#. It has been found that, as the integrable lim
is approached, only a few of the Lyapunov exponents refl
the chaotic behavior; the rest are relatively small. In contr
as chaos becomes complete, the Lyapunov spectrum
comes almost linear.

This work presents results for the MLE, the Lyapun
spectrum, and their temperature dependence; in order to
cilitate the synthesis between the nonlinear dynamics and
condensed-matter perspectives, we have also calculated
local self-correlations of the spin density. Although the lat
quantity does not offer the Fourier resolution needed in
context of detailed studies of transport phenomena and
drodynamic modes, it is less fluctuation sensitive and be
suited to provide reliable data for studying the basic tim
scales involved, i.e.,~i! the short times characterizing th
regular decay of correlations;~ii ! the intermediate times ove
which memory is lost~and chaos established!, best defined in
terms of the decay of self-correlation to half its origin
value; and ~iii ! the long times where diffusive behavio
dominates. Our results demonstrate that, at low temperatu
the inverse of the MLE, the Lyapunov time, is essentia
identical to the time scale~ii ! ~cf. above!. Moreover, our
Lyapunov data reveal the existence of a SST that roug
parallels the transition from spin-wave- to diffusion
dominated regime.

The paper is structured as follows. Section II introduc
some necessary background on the statistical mechanic
finite chains and discusses the dependence of the MLE
the Lyapunov spectrum on the temperature, the size of
chain, and the type of the interaction. Section III prese
results on the autocorrelation function~including a discus-
sion of finite-size effects useful in analyzing long-time dat!,
along with comments on the correspondence between p
7612 © 1997 The American Physical Society
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55 7613NONLINEAR DYNAMICS OF CLASSICAL HEISENBERG CHAINS
of dynamical information contained in MLE and autocorr
lations. Section IV summarizes our basic conclusions.

II. LYAPUNOV EXPONENTS

The dynamics of the classical, isotropic, ferromagne
Heisenberg chain is determined by the spin equations of
tion

dSW i
dt

5TW i~$SW j%![2SW i3¹SW i
H5SW i3~SW i211SW i11!,i

51, . . . ,N, ~2.1!

whereH52( i
NSW i•SW i11 and the chain is subjected to per

odic boundary conditionsSWN11[SW 1. It may be remarked in
passing that there is an alternative, equivalent formulation
classical spin dynamics, in terms of the canonical variab
pi[Si

z andf i5arctan(Si
y/Si

x); we have not used this versio
of the dynamics, in spite of its obvious appeal~smaller num-
ber of equations, symplectic structure!, because it leads to
numerical instabilities~large rates of change! every time a
spin becomes parallel to thez axis. On the other hand, th
spin dynamics described by the 3N equations~2.1! is intrin-
sically slower than particle dynamics~presumably due to the
N conservation laws that express the constancy—N.B. n
constraint—of the spin vectors’ magnitude!; this imposes an
additional limitation on the size of spin rings that can
studied within finite computation times.

ForN>3, there are three independent integrals of mot
that are in involution (H,Stot

z 5( i
NSi

z ,SW tot
2 ); in addition, for

N54 the quantitySW 1•SW 3 ~or SW 2•SW 4) is also an independen
integral of motion. Thus the ring withN<4 is completely
integrable. ForN.4 there areN23 positive Lyapunov ex-
ponents.

We want our Lyapunov calculations to reflect the sy
tem’s behavior at a given temperature. Practically, this
done as follows: We compute~theoretically! the canon-
ical averages at temperatureT @25,26#, ^H&N,T ,
^Stot

2 &N,T (^Stot
z &N,T50), and choose initial conditions for th

spins that satisfyH5^H&N,T , Stot
2 5^Stot

2 &N,T , and Stot
z 50.

The Lyapunov exponents calculated in this manner can
considered typical of the dynamical instability at the ‘‘tem
perature’’T. It should be noted at this point that, from o
point of view, there is nothing special about infinite tempe
ture, i.e., the values given below for infinite temperatu
were obtained from runs with initial conditionsH50 and
Stot
2 5N.
The determination of Lyapunov spectra of Eq.~2.1! is

based on the method of Benettinet al. @27,28#, as imple-
mented by Wolfet al. @29# and Mutschke and Bahr@24# for
particles on a lattice. The scheme involves solving Eq.~2.1!,
along with the linearized equations of motion

ddSia
~m!

dt
5(

j51

N

(
b5x,y,z

]Tia
]Sjb

dSjb
~m! , m51, . . . ,M ,

~2.2!

whereM is equal to the number of Lyapunov exponen
computed andI i

(m)[dSW i
(m)
•SW i vanishes for alli andm and at
,
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all times. @N.B. At t50 this is true by the definition of the
tangent space, i.e., it is reflected in the choice of theM
linearly independent initial conditions. At later times, th
value of I i

(m) remains constant; this constancy is not a co
straint, but a ‘‘conservation law’’ of the joint dynamical evo
lution in phase and tangent space, as defined by Eqs.~2.1!
and ~2.2!. Hence, in the numerical simulationI i

(m) vanishes
within numerical error, as is the case with all conservati
laws.#

Integration of Eqs.~2.1! and ~2.2! is performed by a
fourth-order Runge-Kutta method with adaptive step s
control. The time interval between successive Gram-Schm
orthogonalizations wasDt50.1 and determination of the
MLE took approximately 1.53106 steps; computation of the
full Lyapunov spectrum was restricted to 0.53106 steps. The
statistics of values of the Lyapunov exponents obtained d
ing the last quarter of the integration interval showed that,
all cases, the~relative! standard deviation was less tha
1023 for the MLE and less than 531023 for the other ex-
ponents. The values of the three constants of motion w
monitored during the course of integration; the relative er
did not exceed 531026.

Initially, we computed the MLEl1 for rings of size
N512,24,36,48 and temperatures between 0.15 and` ~cf.
above!. We observe that, although the overall form
l1(T) seems to be the same for allN, the values depend
somewhat on ring size. Furthermore, we exploit the fact t
the MLE approaches a constant value as the tempera
tends to infinity, in order to produce a ‘‘reduced’’ plot of th
temperature dependence of the MLE~Fig. 1!. The values of
the infinite-temperature MLE’s as a function of 1/N are
shown separately in Fig. 2.

The main feature ofl1(T), for all values ofN, is the
smooth change of slope that characterizes the transition f
the low- to the high-temperature regime. This seems to b
generic feature of Hamiltonian systems with a large num
of degrees of freedom. It has been observed in theO(2)
Heisenberg model@30#, the FPUb model, and thef4 model
@20–22# and has been correlated with the appearance o
SST@20–22#, i.e., a critical value of the energy densityec ~or
the temperatureTcr), above which rapid diffusion in phase

FIG. 1. Maximum Lyapunov exponent as a function of tempe
ture for isotropic Heisenberg chains of different sizes.
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7614 55V. CONSTANTOUDIS AND N. THEODORAKOPOULOS
space can occur as a result of strong overlap of resonance
the stochastic web. Diffusion in this case takes place acr
resonances, in contrast to what happens fore,ec , where
~Arnold-like @31#! diffusion can take place only along reso
nances. Orbits in the case of Arnold diffusion are more ‘‘to
tuous’’ and less chaotic. The SST thus signals the destruc
of the stochastic web.

A rough estimate of the crossover temperature can be
tained by the intersection of the straight line that describ
the low-temperature (T,0.4) asymptotic behavior of
l1(T), with the infinite-temperature asymptote. ForN548
we estimateTcr50.55. At low temperatures, we find tha
l1(T);T1.9; we will return to the above estimates of th
crossover temperature and the power-law behavior of
MLE in Sec. III in order to correlate these findings wit
autocorrelation data.

A more complete description of chaotic behavior is pr
vided by the full spectrum of Lyapunov exponents. Comp
tations in a variety of Hamiltonian systems have shown th
as the integrable limit is approached, the number
Lyapunov exponents effectively responsible for chaotic b
havior decreases; in other words, the curvature of the fu
tion l i( i /Nl) ~where Nl is the total number of nonzero
Lyapunov exponents! increases. Conversely, as comple
chaos evolves, the Lyapunov spectrum~LS! becomes nearly
linear.~Compare the numerical evidence given by Liviet al.
@23# that the LS generated by the application of random m
trices is linear.! The curvature of the LS could thus provid
an alternative measure of chaoticity.

In order to pursue this question further, we studied the
for a chain withN518 over the whole temperature rang
used in the MLE computations. Results aboveT50.4 are
consistent with the simple picture presented above, i.e.
monotonic decrease of the spectrum’s curvature with
creasing temperature~cf. Fig. 3!. It should be noted, how-
ever, that even in the infinite-temperature limit, there is
significant deviation from linearity. It would be interesting t
explore whether this is a finite-size effect, but our compu
tional capacities do not allow us to compute LS of larg
chains. On the basis of our findings, we tend to attribute
deviations from linearity to residual nonrandom dynamics;
a spin system this suggests the presence of spin waves
persist up to infinite temperature. This argument is suppor

FIG. 2. Size dependence of the maximum Lyapunov exponen
infinite temperature.
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by the LS of Heisenberg chains with random~i.e.,
H52( i

NJiSW i•SW i11 ,Ji561; cf. @13#! and alternating inter-
actions @Ji5(21)i ; cf. @13##, which show stronger devia
tions from linearity~especially the alternating case! ~Fig. 4!
and concomitant stronger signatures of short-time sp
wave-like dynamics~cf. the next section!.

Results belowT50.4 seem to reverse even the gene
trend: Althoughl1(T) continues to decrease, the spectrum
curvature, as measured by, e.g. ,

^uDlu&
l1

5
1

Nl
(
i51

Nl Ul i2
Nl2 i11

Nl
l1U, ~2.3!

stops increasing and in fact shows signs of a decrease~Fig.
5!. Thus the curvature atT50.2 andT50.5 hardly differ;
maximum curvature appears atT50.4. @It is interesting to
note in this context thatT50.4 is also the maximum tem
perature for whichl1(T) exhibits power-law behavior.# In

at

FIG. 3. Spectrum of Lyapunov exponents at high and interm
diate temperatures.

FIG. 4. Lyapunov spectrum for three types of isotropic Heise
berg chains, with~i! regular ferromagnetic,~ii ! random,~iii ! alter-
nating nearest-neighbor interactions.



r
ra

y
ne

ica
ve
l-
io

-
th
ha
Eq

c
th
a
e

r

a
rep-
ase

ime

the
e of
in
his

is
by
f
ver
if-
rse

ry

i-
ote

ng

the

55 7615NONLINEAR DYNAMICS OF CLASSICAL HEISENBERG CHAINS
conclusion, it appears that the curvature of the LS can p
vide a complementary measure of the chaoticity at mode
and high temperatures.

III. AUTOCORRELATION FUNCTIONS

As mentioned in the Introduction, the spectrum of d
namical correlations has been extensively studied in con
tion with underlying spin-wave dynamics~at low tempera-
tures!, or with spin diffusion~at infinite temperature!. In this
work, we focus on those characteristics of the dynam
autocorrelations that are most likely to relate to the obser
Lyapunov behavior. More specifically, we deal with the fo
lowing issues related to the local spin-spin autocorrelat
function:

C~ t !5
1

N (
i51

N

^SW i~ t !•SW i~0!&: ~3.1!

~i! the short- and intermediate-time behavior ofC(t) and its
relationship with the MLE;~ii ! the determination of the
crossover temperature, above whichC(t) becomes diffusion
dominated, and the relationship to the SST; and~iii ! infinite-
time, finite-size characteristics ofC(t).

Our calculation of Eq.~3.1! at a given temperature pro
ceeds as follows. An initial condition is chosen, wi
E,Stot

z ,Stot
2 equal to their respective average values at t

temperature. The system is left to evolve according to
~2.1! and a time average over the orbit is taken.

Figure 6 summarizes the time dependence ofC(t) for a
variety of temperatures andN548. Finite-size effects can
best be isolated at infinite temperature~Fig. 7!. Finally, in
order to investigate the dependence ofC(t) on the type of
the interaction, we have repeated the infinite temperature
culation for the two chains mentioned in Sec. II, namely,
alternating and the random exchange chain; results
shown in Fig. 8 forN518. On the basis of our findings, w
now discuss the three issues described above.

A. Short- and intermediate-time dynamics
and Lyapunov exponents

The behavior ofC(t) at short times is well accounted fo
in terms of a Gaussian exp@21

2(t/t1)
2], where t1

21

FIG. 5. Deviation of the Lyapunov spectrum from linearity@Eq.
~2.3!# vs temperature.
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5(^v2&)1/2 can be obtained to a good approximation from
second-order moment expansion. This short-time decay
resents the random superposition of regular motion in ph
space~parabolic decay of the cosine functions!; its duration
is at all temperatures shorter than the inverse Lyapunov t
~cf. Fig. 9!. Also plotted in Fig. 9 ist1/2

21 , the ~inverse! time
it takes for the autocorrelation to decay to 1/2, and
Lyapunov exponent. At low temperatures, the dependenc
t1/2

21 on temperature roughly parallels that of the MLE;
fact, the two numbers are rougly equal in magnitude. T
means that the decay of theC(t) to half its original value
fully reflects the system’s chaotic nature. At this point, it
interesting to note that the asymptotic power law followed
the MLE ~cf. Sec. II! makes it proportional to the square o
the inverse correlation length; this is exactly the crosso
time characterizing the transition from spin-wave-like to d
fusive behavior, at wave vectors comparable to the inve
correlation length.

At very high temperatures, the half-time becomes ve
short; its inverse exceeds the MLE. In fact,t1/2

21

5t1
21/(2ln2)1/2 holds, indicating that the decay is now dom

nated by the regular parabolic decay. It is interesting to n

FIG. 6. Autocorrelation function of the classical Heisenberg ri
(N548) at different temperatures.

FIG. 7. Size dependence of the autocorrelation function of
classical Heisenberg ring at infinite temperatures.



of
no
iff

oa

e
b

ffu

a
g
fo
d

tic

10
t

e
on-
has-
It

- to
his
de-
and
ace;
e of
the
he

fol-
of
spin
ses,
w-
This
es
ence

ap-
pen-

be
d
s
de-

not

ee
lte

as
tio

n
o

7616 55V. CONSTANTOUDIS AND N. THEODORAKOPOULOS
that the numerical value of the MLE allows this type
behavior. If the MLE had a larger value, there would be
parabolic decay and no plateau preceding the onset of d
sion. The steep change int1/2

21 betweenT50.6 and 0.8 re-
flects the fact that, at this temperature, the height of the br
plateau inC(t) ~cf. Fig. 6! is in the vicinity of 1/2.

B. Spin diffusion vs strong stochasticity thresholds

At infinite temperature, the long-time behavior of th
spin-spin autocorrelations is expected to be dominated
spin diffusion. In one dimension this impliesC(t)}t21/2.
Sidestepping the issue of anomalous vs conventional di
sion for the moment~cf. below!, we will consider, for our
purposes, diffusive behavior to be defined by a power-l
decay ofC(t); we are principally interested in determinin
the temperature dependence of diffusive behavior and in
lowing its correlation with the onset of fully develope
chaos.

FIG. 8. Autocorrelation function at infinite temperature for thr
types of classical Heisenberg rings, with regular, random, and a
nating nearest-neighbor interactions~cf. text!, respectively.

FIG. 9. Summary of the temperature dependence of the b
time scales that govern the dynamics of the autocorrelation func
C0(t). The upper curve represents the widtht1

2 of the Gaussian fit
to the short-time~nonchaotic! parabolic decay of the autocorrelatio
function. The inverted triangles represent the halflife of the autoc
relation; note the steep increase aroundT50.6. Also plotted are the
values of the maximum Lyapunov exponent.
u-

d

y

-

w

l-

It can be seen from Fig. 6 that the transition from ballis
to diffusive behavior occurs somewhere betweenT50.4 and
T50.8. In order to make this clearer, we present in Fig.
the time segment 10<t<90 and attempt to fit to a straigh
line. Deviations are evident forT50.4 andT50.5; they are
hardly visible atT50.6. It is reasonable to claim that th
latter temperature signals the crossover to the diffusi
dominated regime. It should be noted that the strong stoc
ticity threshold~cf. Sec. II! also occurs at that temperature.
therefore appears that the transition from~phase-space! dif-
fusion along resonances to~phase-space! diffusion across
resonances coincides with the transition from spin-wave
diffusion-dominated dynamics. In order to understand t
phenomenon better, it should be remembered that the
struction of the stochastic web is not a sudden process
does not necessarily occur homogeneously in phase sp
this is best demonstrated by the smooth change of slop
l1(T) in the isotropic Heisenberg case, as compared with
FPU b or f4 models. The scenario taking into account t
numerous investigations of~space and time! Fourier-
transformed spin-spin correlations seems to proceed as
lows. At relatively low temperatures, only those regions
the stochastic web are destroyed that correspond to
waves of low wave numbers. As the temperature increa
the destruction of the web extends over wider regions, allo
ing diffusive behavior across resonances in phase space.
should not be construed to imply that all spin-wave mod
are overdamped; indeed, there is evidence for the persist
of some spin-wave modes~with wave vectors near the
Brillouin-zone edge! up to very high temperatures@11,15#.

The exponent of the power law that characterizesC(t)
remains temperature independent from the onset of its
pearance. Furthermore, its value, 0.6, appears to be inde
dent of the ring’s length.

Traces of the anomaly in the diffusion exponent can
seen in Fig. 9, whereC(t) is plotted for regular, random, an
alternating chains withN518. The regular chain has les
structure at short and intermediate times and appears to
cay faster at long times.

C. Long-time characteristics: Finite-size effects

It can be seen from Figs. 6–8 that autocorrelations do
decay indefinitely. After a finite timet` , C(t) saturates at a

r-

ic
n

r-

FIG. 10. Long-time behavior ofC0(t) at temperatures
T50.4,0.5,0.6,0.8~from top to bottom!; note the onset of the
power-law behavior aroundT50.6.



-
ro
he

is

e of
. 8

the
at
e is
n-

m.
s:

are

ith

as

55 7617NONLINEAR DYNAMICS OF CLASSICAL HEISENBERG CHAINS
finite valueC` . Both constantst` andC` are size depen
dent; accordingly, a study of the size dependence may p
revealing for the system’s approach to equilibrium in t
thermodynamic limit.

Conservation of the total magnetization

SW ~ t ![(
i51

N

SW i~ t !5SW ~0! ~3.2!

implies that the correlation functions

C~m!~ t !5
1

N (
i51

N

^SW i1m~ t !•SW i~0!& ~3.3!

FIG. 11. Limiting value of the spin-spin autocorrelation
t→`, plotted as a function of temperature, forN548. Also shown
is the prediction of Eq.~3.5!.
ve

satisfy at all times the sum rule

(
i51

N

C~m!~ t !5(
m

^SWm~0!•SW 0~0!&5
11u

12u
, ~3.4!

whereu5coth(1/T)2T. At very long timest.t` , spin dif-
fusion ensures that any fluctuation in the initial values
uniformly distributed in the chain, i.e., all terms in Eq.~3.3!
contribute equally to the sum, and

C~m!~ t !'C`5
1

N

11u

12u
, m51, . . . ,N. ~3.5!

The above reasoning is independent of the particular typ
chain and depends solely on the isotropic property; Fig
confirms this explicitly by showing thatC(t) in the ferro-
magnetic, random, and alternating chains all converge to
same limiting values. It is already apparent from Fig. 6 th
this type of finite-size effect increases as the temperatur
lowered. The plot shown in Fig. 11 confirms that this i
crease ofC` closely follows Eq.~3.5!.

The size dependence oft` offers additional insight into
the long-time, diffusion-dominated dynamics of the syste
It is instructive to analyze the data in two different way
plotting t.t` vsN on a double logarithmic scale@Fig. 12~a!#
shows that the data for the chains considered in this work
consistent with

t`}N1.67; ~3.6!

such a value might indeed reflect anomalous diffusion w
an exponent equal to 1/1.6750.6, i.e., in agreement with the
oubly
FIG. 12. Right: size dependence oft` , the time it takes for the spin-spin autocorrelation to reach its saturation value. The scale is d
logarithmic and the slopeb51.67 corresponds to a spread of a spin fluctuation according to^(Dx)b&}t, i.e., an anomalous diffusion with
an exponent 1/b50.60 ~cf. Ref. @12#!. Left: regular diffusion@fit according to Eq.~3.7!# would produce points lying on a straight line.
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7618 55V. CONSTANTOUDIS AND N. THEODORAKOPOULOS
value originally suggested by Mu¨ller @12,13#. Alternatively,
it is evident that our results cannot be fitted to the strai
line

t`~N!

N2 5a1
b

N
~3.7!

@Fig. 12~b!# @which would imply a loss of memory due t
~regular! diffusion, including~analytic! corrections that be-
come negligible in the thermodynamic limit#. The above pro-
cedure distinguishes between Eqs.~3.6! and~3.7! and can be
used, in principle, as adirect test for anomalous diffusion
unfortunately, the chain lengths necessary for a definitive
are beyond our present computational capabilities. In view
the current lack of~general as well as internal! consensus
between theoretical approaches~conventional hydrodynam
ics vs ‘‘refined mode coupling’’ @32#, which proposes
anomalous diffusion with an exponent 2/5! and extensive
numerical simulation results~which suggest that regular dif
fusion may@15# or may not@19# prevail at longer times and
larger chains! such a~definitive! test appears highly desir
able.
.
2

t

st
f

IV. CONCLUDING REMARKS

We have shown that the information contained in t
Heisenberg chain’s Lyapunov exponents may be usefu
interpreting the dynamics of the local autocorrelation fun
tion. The quantitative agreement between the larg
Lyapunov exponent and the inverse half-time of the lo
self-correlation at low temperatures confirms that both qu
tities express the time scale involved in the loss of mem
occurring in the near-integrable regime. At intermediate te
peratures, we have identified the occurrence of the SST w
the passage of the autocorrelation dynamics from the s
wave- to the diffusion-dominated regime. Finally, at infini
temperatures, the deviations of the Lyapunov spectrum fr
the linear form has been ascribed to the same lack of c
plete chaos that characterizes autocorrelations; moreover
relatively small value of the largest Lyapunov expone
compared with the period of short-wavelength excitatio
explains why the latter persist even at infinite temperatu
giving rise to the ‘‘plateau’’ feature in the self-correlation.
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@18# M. Böhm, R.W. Gerling, and H. Leschke, Phys. Rev. Lett.70,
248 ~1993!.

@19# O.F. de Alcantara Bonfim and G. Reiter, Phys. Rev. Lett.69,
367 ~1992!; 70, 249 ~1993!.

@20# M. Pettini and M. Landolfi, Phys. Rev. A41, 768 ~1989!.
@21# M. Pettini and M. Cerruti-Sola, Phys. Rev. A44, 975 ~1991!.
@22# L. Casetti and M. Pettini, Phys. Rev. E48, 4320~1993!.
@23# R. Livi, A. Politi, S. Ruffo, and A. Vulpiani, J. Stat. Phys.40,

147 ~1987!.
@24# G. Mutschke and U. Bahr, Physica D69, 302 ~1993!.
@25# M.E. Fisher, Am. J. Phys.32, 343 ~1964!.
@26# G.S. Joyce, Phys. Rev.155, 478 ~1967!.
@27# G. Benettin, L. Galgani, and J.-M. Strelcyn, Phys. Rev. A14,

2338 ~1976!.
@28# G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Me

chanica15, 9 ~1980!.
@29# A. Wolf, J.B. Swift, H.L. Swinney, and J.A. Vastano, Physic

D 16, 285 ~1985!.
@30# P. Butera and G. Caravati, Phys. Rev. A36, 962 ~1987!.
@31# V.I. Arnold, Dokl. Akad. Nauk SSSR156, 9 ~1964! @Sov.

Math. Phys. Dokl.5, 581 ~1965!#.
@32# S.W. Lovesey and E. Balcar, J. Phys. Condens. Matter6, 1253

~1994!.


